
4

Final Rcpwt on the
Feasibility of Using ijhe Massively Partillel I’roccssor for Large Eddy
Siniulatioiis and Other Computationd Fluid Ilynaluics Ayylic~tions

John Bruno

June 1984

Research Institute for Advanced Compoter Science
h ASA A riles Research Center

I (EASA-CR-185427) EIASIBILI3P OF O S l l G THE ara9-256a
EASSIOELP PABALIEI E G C C E S S C B f C E LASGE EDDY
S I B O L A I I C E S AbD 036ER C C X P G S B 1 I C I A L PLUID CPlJALllCS A E € L I C A ’ I I C I S €loa1 Eejcrt Unclas
(besearch I n s t , fcE Advanced LcrFttter 63 /62 0217920

I

Research Institute for Advanced Computer Science

Table of Contents

Page

1 . Summary .. 1
2 . Introduction ... 4

4 . Yumerical Simulation Vsing an Explicit Scheme ... 6
4.1 The Computaional Domain .. 6
4.2 The Numerical Method ... 7
4 . 3 Mapping the Computation onto the MPP .. 8

4.3.1 The ‘4rray Unit .. 9
4.3.2 The Staging Memory .. 10

4.4 The Algorithm .. 12
1.5 Performance Estimates ... 14

5 . Xumerical Simulation Csing an Implicit Scheme ... 16
5.1 The Numerical Method ... 16
5.2 Block Tridiagonal Solver .. 19
5.3 Staging Memory ... 21
5.4 Performance Estimates ... 22

6 . Other Computational Requirements of CFD .. 23
6 .1 Grid Generation .. 23
6.2 Zonal Methods .. 24
6.3 Equations of State .. 25
6.4 Software Requirements ... 26

7 . MPP Architecture Extensions .. 26
7.1 Storage .. 26
7.2 Speed .. 27
7.3 Other Issues .. 27

8 . Conclusions 28
9 . References ... 28

3 . The Savier-Stokes Equations ... 5 . ..
I

.

Final Report on the Feasibility of Using the Massively
Parallel Processor for Lar e Eddy Simulations and Other

Computational Flui B Dynamics Applications

John Bruno
Research Institute for Advanced Computer Science

NASA Ames Research Center

1. Summary

This report presents the results of an investigation into the feasibdity of using the MPP for
direct and large eddy simulations of the Navier-Stokes equations. A mapr part of this study
has been devoted to the "implementation" of two of the standard numerical algorithms for
CFD. These implementations were not run on the Massively Parallel Processor(MpP) since the
machine delivered to NASA Goddard does not have sufficient capacity. Instead we designed
detailed implementation plans and from these we derived estimates of the time and space
requirements of our algorithms on a suitably configured MPP. In addition we considered other
issues related to the practical implementation of these algorithms on an MPP-like architecture,
namely, adaptive grid generation, zonal boundary conditions, the table lookup problem, and
the software interface.
Our performance estimates show that the architectural components of the MPP, the Staging
Memory and the Array Unit, appear to be well suited to the numerical algorithms of CFD.
This combined with the prospect of building a..fku$and larger MPP-like machine holds the
promise of achieving sustained gigaflop rates that are required for the numerical simulations
in CFD.

Below we summarize the mapr results and conclusions contained in this report.

e The MPP deUvered to NASA Goddard is not adequately wnjgured for handling direct
or large eddy namerid simulono * ns of the Novier-Stokes equrrrionS.
The Processing ElemendPE) local memory is 1K bits which is too small for the problems con-
sidered thus far. The current Staging Memory(SM) capacity is 2 Mbytes. This is barely ade-
quate for a 32 by 32 by 128 computational domain using an explicit algorithm. Of mume,
much larger domains are routinely used in practice. Also, the implementation of the implicit
method requires substantially more SM capacity or a high-speed channel to disk. Currently,
the only available path to disk is through the hoet computer.

e As a r e d of the crbovc we have wnmatt-ated ow effort on evaluating the f easibiky of
applying the MPP's architsctural wmponmt~ to probiems in CFD.
The major architectural components of the MPP arc the Array UnidAU) and the SM. The
AU consist8 of a 128 by 128 array of PES which responds to a single instruction stream. Each
PE is a bit-acrial processor with local memory. The SM is a largecapacity memory system
which is capable of high-spad data transfers and data reformatting operations. Our goal is to
assas the advantages and disadvantages of these architectural components in CFD applicatims.

June 29,1984

- 2 -

We are encouraged by the perf ormame e s t i w e s of the direct sirrmlation of the Navier-
Stokes equations using a fully explicit Lax-Wendroff method and the Beam and Warming
impricit factored method.
We have designed an implementation of a direct numerical simulation of the Navier-Stokes
equations using a fully explicit Lax-Wendroff method. For a 32 by 32 by 128 computational
domain we estimate that our implementation requires .272 seconds per time step and achieves
a sustained floating-point operation rate of 243 megaflops.
We have also considered a 128’ computational domain. In this case we estimate 3.26 seconds
per time step and a sustained floating-point operation rate of 328 megaflops Even though
there is a 16-fold increase in the problem size in going to the 128’ domain there is less than a
16-fold increasc in the computation time. This is because there is no additional cost to do the
boundary computations as the problem is scaled up to 128’.
In the above we have assumed that the PE local memory size is at least 6400 bits, the SM has
all 32 banks and has a capacity of at least 80 Mbytes, and the basic cycle time is 100
nanoseconds. Tlus codguration could be acheved by upgrading the current machine.
The above estimates compare favorably to essentially the same algorithm w h c h was coded
and run on the CRAY x;Mp by Alan Wray of NASA Ames. Several runs of this code were
made recently and it was found to take approximately one second of CPC time per time step
for the 32 by 32 by 128 domain and 16 seconds per time step for the 1283 domain. These runs
used only one of the CRAY XVP processors and all arithmetic was done with 64 bits of preci-
sion.
We also considered the Beam and Warming implicit factored method and found that sustained
megaflop rates comparable to the explicit case could be maintained when the ‘CrOBP-SeCtion’ of
the computational domain is comparable to the PE array. The implementation we recommend
requires a substantial amount of memory for intermediate results for the block tridiagonal
solver. Here we have assumed the existence of either a second S M with 256Mbytes storage
capacity, a 128Kbit local memory for each PE, or a high-speed Channel to disk.

a A variety issues arise when we looA at whether an MPP-like machine can be successfully
used in practical CFD applic4tiarrJ and consequently there are several topics which deserve a
thorough cyQltLatl0lL.

In this study we have paid much attention to numerical algorithms and feel that the MPP
holds promise in this area. (There are many numerical schemes we have not considered with
the most notable exception being the spectral methods.) However, the numerical algorithms
are not the whole story.
Adaptive Grids: Adaptin grid generation couples the grid system to the physical solution in
order to dynamically alter the location of the grid points as the solution evolves. This is an
area of intense research and holds the promise of being able to greatly enhance the
effectiveness of numerical methods. It is imporrant to consider the MPP architecture in light
of the additianal computations implied by the mathematics of adaptive gtids.
Zonal B d u r i e s : Complex geometries often require that the physical space be partitioned
into zones. This introduces new boundaries between zones called zonal boundaries and an
additional set of boundary conditions. It is important to consider the effect of the computa-
tions at the zonal boundaries on the effectiveness of the MPP architecture.
Tab& Lookup: Equation of state computations often involve table lookup processes Table
lookup is not suited to the MPP architecture as it stands and 90 this represents an important
area for further investigatim. Such an investigation should look to new architectural struc-
tures and algorithms to combat this important problem.
SofnvarC Interface: All too often exotic hardware systems are constructed and delivered
without adequate software to make the system usable. The MPP is an example of such a sya-
tem which at this writing haa no completely working high-level programming language. In

June 29,1984

- 3 -

fact, it is not totally clear that the provision of a high-level programming language will be
sufficient to get scientists and engineers to use the machine productively. In the case of CFD
we can envision a much more sophisticated software interface which responds to a nonpro-
cedural language for specifying the physical problem and the appropriate numerical method(s)
with all the translation to data layouts and codes being handled by the software. Such a
comprehensive software environment is only feasible if we are w d h g to sufficiently restrict
the domain of discourse and to make the software part of the total system design effort from
the very beginning.

A bigger, faster, and more fzcxiblk MPP could be built.
Discussions with the MPP architect and hardware engineers suggests that a faster MPP can be
constructed. A ten times faster PE has already been designed. PE local memory capacity and
SM capacity can also be increased. Additionally, a largexapacity high-bandwidth disk suhsys-
tem has been designed. In shon there doesn't seem to be any reason why we couldn't build an
,MPP-like machine which is capable of sustained gigaflop performance.

Summary and Speculation.
The MPP architecture Seems suited to the numerical algorithms of CFD. The Array Unit
with its 128 by 128 array of processing elements can be used effectively for both explicit and
implicit numerical algorithms. Even more importantly, the Staging Memory has the flexibil-
ity to provide the different "views" of the problem data which are required by the numerical
algorithms. There are other issues in practical CFD such as adaptive grid generation, zonal
boundaries, etc, which deserve further study and there are additional numerical methods,
such as the spectral methods, which should be measured against this architecture. It also
appears that the capacity, speed and flexibility of the MPP architectural components can be
substantially improved thereby offering the prospect of taking us into the gigaflop range for
sustained computational rates.
Wind tunnels are systems which are designed to carry out a specific class of experiments.
Even though a wind tunnel is a very expensive system to build, run, and maintain, no one
seems too scandalized to learn that a wind tunnel cannot be used to accelerate electrons It is
tempting to speculate about designing a special-purpose hardware and software system to do
CFD. It seems as though many of the numerical methods in CFD have matured to the point
where we could select a limited but useful class of algorithms tq implement. In doing so we
enhance the chances of building a system which far outpaces anything that could be accom-
plished by a general-purpose system.

June 29,1984

2. Introduction

In this report we present the results of an investigation into the feasibility of using the Mas-
sively Parallel F’rocessodMPP) for problems in Computational Fluid DynamidCFD).
Specifically, we are interested in the numerical simulation of the Navier-Stokes equations for
situations in which few simplifying assumptions can be made and for h g h Reynolds number.
If we insist on a direct simulation of the Navier-Stokes equations for any practical problem,
an enormous number of grid points is required to resolve the wide range of scales of motion.
An alternative to numerically resolving all scales of motion is to model those scales not
resolvable by the computational grid in terms of the resolvable scales. This technique is
referred to as Large Eddy Simulation(LES) and is also computationally intensive. In either
case we are faced with problems whose computational demands in time and space are beyond
the capacity of todays supercomputers. Thus we are motivated to consider the MPP with the
hope that its (massively) parallel architecture may be able to cope with the demands of 0.

The MPP is a hgh-speed digital processor designed to solve twc-dimensional problems such as
those encountered in the processing of satellite imagery. The MPP was designed and built by
Goodyear Aerospace for NASA Goddard and was installed and accepted at Goddard in May,
1983. It encorporates two major architectural components. namely, an Array UnidAU) array
and a Staging Memory(SM). The AU is a 128 by 128 array of bit-serial Processing
Elements(PE) which responds to a single instruction stream. Each PE has 1K bits of local
memory and a basic cycle time of 100 nanoseconds. The SM is a large memory system which
stores the problem data and is designed to transfer data to and from the AU and perform cer-
tain data reformatting tasks. The SM encorporates the idea of a multidimensional access
memory(Batc771 in the designs of the input/output substagen and in the main stager. The
reader who is not familiar with the MPP is referred tdBatc801 and[Aero83] for a full descrip
tion of its theory and operation.

The MPP currently installed at NASA Gcddard is configured with 2 megabytes of SM and 1K
bits of local storage per P E This configuration is not adequate for CFD. There are three areas
where more capacity is needed.
1) The SM is not fully configured. The current SM configuration contains 2 megabytes of

storage instead of 64 megabytes which is the maximum that could be acheved using 64Kbit
dynamic RAM chips. In addition, the SM is currently configured with 4 memory banks instead
of the 32, the maximum number. This affects the transfer rate of the SM which currently is
20 megabytes per second rather than 160 megabytes per second.
2) The PE local memory is too small. Currently each PE contains 1K bits of local memory.
The PES can handle up to 64K bits of local memory but the upgrade could a t as much as 2.2
million dollars and is not likely to be done in the near future.
3) The MPP has no direct access to secondary storage. All accesses to secondary storage must
go through a host machine and therefore the bandwidth is severely limited. This problem
could be mitigated with an additional 3.3 million dollars which would give the MPP direct
access to secondary storage with a transfer rate of 25 million bytes per second and a capacity
of 4.992 Mbytes This system could achieve a maximum configuration of 39,936 Mbytes of
storage and a transfer rate of 1OOMbytes per secoI1cI.

In view of the above we shall not attempt to evaluate the MPP as installed at Gcddard but
instead assume a fully configured machine(p0Spibly more than fully configured). For example,
we shall assume that the PE memories are suf6ciently large to hold all the data values neces-
sary to obtain an efficient algorithm. Also we shall assume that there is enough staging
memory to hold the problem data and in some cases we will make the assumption that there
is direct accernr to secondary storage with a sufficiently high data transfer rate. The point is

June 29,1984

- 5 -

that we do not want to be thrown off the track by the configuration h t a t i o n s . Our goal is to
determine whether the h4PP's archtectural features are suitable for the numerical simulations
described above.

The remainder of this report is organized as follows We first present the Navier-Stokes equa-
tions. Next we design an implementation of a direct numerical simulation of the Navier-
Stokes equations using an explicit Lax-Wendroff method. Using this design we derive perfor-
mance estimates with respect to our implementation. These results are then compared to the
performance of similar codes which were run on a Cray XMP. We then design and analyze
an implementation of the Beam and Warming implicit factored numerical method. Following
this we consider a number of additional factors which arise in the application of these numer-
ical methods to practical fluid dynamics problems. Lastly, we discuss possible hardware
improvements and extensions to the MPP architecture.

3. The Navier-Stokes Equations
The unsteady, three-dimensional Navier-Stokes equations in Cartesian coordinates (x ,y ,z z
are taken as the basic set of equatiodloma82]. The Cartesian space represents both the physi-
cal domain and the the computational domain. It is known that the physical domain can be
transformed into other curvilinear coordinates thus making it possible to treat a wide variety
of geometries using one basic set of equations over a simple computational domain. These
transformations introduce additional metric terms into the basic equations. We have chosen
not to include these terms in order to make a more direct comparison of the estimated perfor-
mance of our implementation with the actual preformance of an already existing
codefWray841. Obviously, the elimination of the metric terms reduces the computational bur-
den and so later in the report we will determine the effect of the metric terms on our perfor-
mance estimates.
The three-dimensional Navier-Stokes equations are given by:

where

(3.1)

K aeI 8, = y- + u 7,, + v 7,)# + w 7, , Pr ax

June 29,1984

- 6 -

K del p, = y- + u r;, + v T i Y + w 7,: ,
Pr a t

The velocity components u ,v , and w are made dimensionless by a - the freestream speed of
sound, the density p is made dimensiodess S v poD and the total energy e by pmu 2. The pres-
sure p is given by (l-yxe -0.5~6~ ' + v '+w 3) where y is the ratio of specific heats. Also, K
is the coefficient of thermal condcc::vity, p is the dynamic viscosity, and X from Stokes'
hypothesis is -21 3p. The Reyno!ds nuv-k r !s Re and the ?rant! number is Pr .

4. Numerical Simulation Csing an Explicit Scheme

In this section we work through an e.uamp!e implementation in order to eva!uate the
effectiveness of the MPP architecture in comFuring three-dhensional flows. The numerical
method w e use is a Lax-K'endroff method[Ames69:. This is an explicit method w h x h seems
suited KO rhe .WP architecture. The numerical r n e r h d is given below as we l l as a mapping of
the computation onto the YPP architecture. U'e shall assume that the Staging Memory is
fully populated with 32 banks and that the PE memories are large enough to hold all the
necessary intermediate values.

4.1. The Computational Domain
The computational domain D is the set of spatial points over which we attempt to numeri-
cally evaluate the dependent variables p , p u t pv , pw , and e . The points in D are called
grid points. The grid points are equally spaced in each of the coordinate directions and there
are Imax grid points in the x direction, Jmax in the y direction, and Kmux in the z direc-
tion. The spacings between grid points in the x , y , and z directions are given by I & I ,

I Ay I , and I & I , respectively, where & , Ay , and & denote vectors in their respective
coordinate directions. Formally we define the computational domain D as:

D = (r I r = i h r + j A y + k & , w h e r e

i , j Jc are nonnegative integers, and i < I m a x , j <Jmax, k <Krnax 1 .
We will find it convenient in describing the computational method to define additional sets of
points. We partition D into two sets I and B . The points in I and B are called interwr
grid points and boundary grid points, respectively. We also define the set C of "cenfer"
points. These points are important since many intermediate values are computed which we
conceptually associate with the points in C . Ln order to formally define the above sets we
first define the quantities r + and r - where r is any point in in space.

I '

Ax + A y + &
2

& + A y + &
2 '

r + = r +

r - = r -

The sets C , I , and B are defined as follows:

C = {r+IrrD)n{r-IrbD),
I = (r Ir E D and r+EC and r-EC 1,

June 29,1984

- 7 -

and
B = D -1.

In Figure 1 we give a two-dimensional example of the sets we have Just defmed.

4.2. The Numerical Method

The Lux-Wendrof method is and explicit procedure for advancing Q in time. The values for
time t in the numerical method are restricted to n At where n = 0, Yz, lY2, 2, * - - and At is
the time-step. Variables in the numerical method are denoted as follows:

p" (r 1 = p(x ,y J t 1 ,
pun (r 1 = p u (x .y J f 1 ,

etc.

where r = (x ,y ,z 1 and t = n At.
Other quantities are denoted similarly, namely,

Q" (r 1 = [p" (r 1 pun (r 1 pv" (r) pw " (r) e" (r) 1' ,

E " (r 1 = E (Q" (r 11,
etc.

The method we use is an explicit procedure for computing Q " +l(r 1 from Q" (r 1 for all
r E D . In the process we need to compute intermediate values which we conceptually associate
with points in C and t =(n + Y z) A t . Before giving a formal description of the algorithm we
introduce some additional notation for describing the differencing and averaging processes.
Let

x f ace (r 1 = { r J +Ay J +& J +Ay +& 1 ,
y f ace (r 1 = (r J +A.X J +& J +AX +AZ 1 ,
z f o c e (r) = { r ~ + A y J + ~ J + A y + ~ l ,

and

If in some quantity, say p" (r 1. we replace r by a set of points, say x f ace (r 1, then the
notation denotes the sum of the values of p" over all points in xf oce (r >. For example,

p" (x f ace (r 1) = p" (5 1
s c r f o u (r)

Finally we define, by example, the numerical differencing operators 6, , a,, and 6,.
* (x f ace (r +AX 1) - p" (x f oce (r >I

41Ax 1 6, p" (r 1 =

June 29,1984

-t

‘E-
_ -
-

- 8 -

It should be clear from the above examples how the numerical dflerence operator works. We
are now in a position to give the numerical method in detail.

Lax-Wendroff Method

Input: Q ' (r) is given for all r E D and some nonnegative integer n.
output: Q "(r) for all r E D
Method:

Step I: For all r EC compute

8
(r - %SI 2 E n (r -> + 6, F (r -) + S L G (r -)) . Q" "Yr = Q

Step 2: For all r EC compute
E +"(r) = E (Q +"<r >) ,

F +"2(r) = F (Q '"qr >> ,
and

G ++(r) = G (Q +"*(r)> .

Step 5:
For all r E B compute Q " +l(r
tions.

from Q " (r according to the appropriate boundary condi-

4.3. Mapping the Computation onto the MPP

_ - - 1 I

There are two aspects to mapping a computation onto the MPP: 1) mapping the problem data
into the Array Unit and 2) mapping the problem data into the Staging Memory. In this scc-
tion we describe how we have chosen to handle each of these issues

June 29.1984

- 9 -

4.3.1. The Array Unit

The possible mappings of the computational steps and problem data into the AC are suggested
by the inherent parallelism in the computational steps and the data dependencies among the
computed values. The primry objeczive is to maximize the average number of simultaneously
active processing elements throughout the computation.

The computational method described in the previous section exhibits a substantial amount of
mherent parallelism. The computations associated with each grid point in D are independent
of the computations associated with all other grid points. and thus it is conceivable that all
grid points could be done in parallel. Furthermore, the computational s t e p for each point in
Z are identical(except for the values that are manipulated). Thu suggests that gnd points
should be mapped acros processing elements. The computational steps for boundary points are
not completely unlform and have to be treated in a special manner. Here again, any computa-
tion which is uniform acros grid points is likely to perform best if these points are mapped
acros the processing elements.

The dependencies between values associated with different grid points suggest the actual m a p
ping of grid points to processing elements. Since the processing elements are connected in a 2-
dimensional mesh, we are motivated to assign "neighboring" grid points to " neighboring" pro-
cessing elements. If we were to do otherwise we would pay a heavier penalty for data
transfers between processing elements.

To make matters concrete we take Z m x = J m x = 32 and Kmox = 128. Our first step is
to create a indexing scheme so that we can refer to the data associated with each grid point in
the computational domain. Different schemes tend to anticipate alternative mappings of the
problem data into the PE array. For example, Figure 2 depicts the computational domain
where we have partitioned D into 128 xy -planes of grid points. Each xy -plane contains 32
rows and 32 columns of grid points and each grid point has a 32-bit data value associated with
it. Actually there are five dependent variables associated with each grid point (namely, p, pu ,
pv , pw , and e but for simplicity we shall consider indexing schemes with one data value
per grid point. In our implementation we will have five identical storage areas in the SM, one
for each of the dependent variables.

In what follows we shall use the indexing scheme of Figure 2. Let

Pk = (r fD Ir = (x , y & I & 1)) -
Kmax -1

Clearly D = u P k . The Pk are called plums. Let PEd denote the processing element
k =O

in the arh row and the brh column of the PE array(the coordinate orientation is shown in
Figure 3a) where O& ,b a 2 7 . If grid point r is mapped to PE, then the data values associ-
ated with r are stored in the local memory of P E d . Let Boardk denote the set of grid
points in the 16 planes P k , P k +a, P k +lb - - , P k The grid points of Boardk are mapped
onto the PE array as shown in Figure 3a. It is not too difficult to see that grid point
(i I & I , j l Ay l,k I & I) ismappedtoPEab where

and

June 29,1984

ORIGINAL PAGE IS
OF POOR QUALtW

-__

E 2 3 -

Y

i

ORIGINAL PAGE IS
OF POOR QUALITY b

il--._ I

I
I

(3s)

(3 6) PE f ? K R d Y

A

.-

- 10-

The importance of a Board is that if grid points r and r' are in the same Board then the
data values associated with grid points r and r' are stored at identical locations in their
corresponding PE memories. Also, the motivation for layout of the grid points w i t h a
Board is to maximill? the uttlization of the PES by permitting the computation of Q R +l(r 1 to
take place on 16 different planes simultaneously.

To compute Q " "(r) for r in I we need the values of the variables associated with r and
the "surrounding" grid points and center points. It is easy to see that the computation of
Q +l(r for r €Pt depends on Q (r for r in planes Pk -1. Pk , and Pk + I . Considering Fig-
ure 3b which shows Boards 1, 2, and 3 loaded into the PE array, we see that we can simul-
taneously compute Q" +l(r for all r in Board n I . By "loading" Board we are able to
compute Q n +'(r) for r in Board 2(71 and so on. As this process is repeated we "sweep"
through the computational domain computing e"+ ' for all grid points in Boardk for
k = 1, 2 , . . . , 8. Pm is undefined for k 2l28. There are two planes, P o and P 127, for which
the computations have to be masked since these planes contain only boundary points and thus
require special treatment.

The data dependencies for boundary points are relatively simple. For example, the boundary
point computation associated with point (0,y ,z) depends only on the values associated with
the point (1.y ,z >. Our objective is to perform a maximum number of boundary point compu-
tations simultaneously. Let ROW, denote the yz -plane with x = i 1 & I and Column,
denote the xz -plane with y = j I Ay I where 06 , j el. In order to compute Q n "(r for
all r in Rowo we need the values of Q" (r for all r in Row Similarly, the computation
of Q " +'(r for r in Row 31 depends on the values of Q " (r for r in Row In .Figure 4 we
show how we intend to store these Rows in the AU. With this arrangement there is no need
for data transfers between PES and we will be able to compute boundary values for all
points in Rowo simultaneously. We treat the computations of the boundary points in
Column and Column I similarly. Plane Po depends on plane P and is handled in a manner
slmilar to the Row and C&mn boundary points. Finally, on plane P 127 the value of Q" +'
is set equal to the value of Q n on plane P 126.

4.3.2. The Staging Memory

In this section we determine an appropriate layout for the problem data in the SM. To sim-
plify matters we assume that there is enough SM storage to accommodate the dependent vari-
ables at two successive time steps. Therefore, while computing the dependent variables for
time step n +1 we retain the values of the dependent variables at time step n . The primary
objective in designmg a layout for the data in the SM is to find one which permits data
transfers to and from the AU at a sufficiently high rate so as to "hide" these data transfers
behind the PE computations. There is also the consideration of data transfers to and from the
host. This is less of a problem due to the assumption that the SM can store the problem data
for two successive time steps. Finally, we would like to obtain a layout that "packs" the
problem data in a spacezfficient manner.

It follows from the various mappings of the problem data into the PES (e.g. Figures 3 and 4)
that we will need a corresponding number of a c e s mechanisms to the problem data in the
SM. We will need fast access to the problem data viewed as B w d s , Rows and cdumns The
process of finding as suitable layout can be somewhat tricky. It can be done "by hand" Using
the road map idea[Batc81] or automated through the use of a software package called the Stag-
ing Memory ManagedBatc83]. In either case we begin by determining indexing schemes for
the three views. These indexing schemes are basically permutatiaaur of the original coordinates
given in Figure 2. Once these schemes are known, we then determine whether there exists a

June 29,1984

- 11 -

layout of the problem data in S.M which permits fast access to the data according to all the
required indexing schemes. Thls determination is done either using road maps or the Staging
Memory Manager.

In the following we show how to determine the indexing schemes for our problem data. Sub-
sequently, we shall present a layout for the problem data in the SM w h c h is compatible with
each of the indexing schemes. We will not give the steps by which the layout was deter-
mined. Although this process is important, it would require a rather lengthy explanation
which is beyond the scope of thls report. The interested reader should refer
tdBatc81, Batc831

In Figure 2 we gave the indexing scheme for referring to the problem data. The coordinates
are P , R , C , and B where P denotes the planes (0 < P < 127). and R .C , and B denote
the rows, columns, and bits, respcctively(0 < R ,C ,B < 31). In what follows we will make
use of the binary representation of the coordinates. for example, P = (P bp $3 ,P Jd
where Pi denotes the i '' binary digit of P and

6
P = Z P i 2 ' .

i =Q

I t is helpful to recall that data is loaded into the AU by bit planes. This means that to load a
particular variable we have to transfer 32 bit planes corresponding to the 32 bits used to
represent the data value. We m u m e that the S-plane is loaded column-byalumn from the
right-hand edge. After a column is loaded the whole S-plane is shifted to the left by one
column in order to accept the next column of bits from the SM.

We shall first consider the problem of determining the indexing scheme for loading a Board
into the PE memory. Since we load the S-plane column-bycolumn the R coordinate wdl
vary the fastest. It follows from Figure 2 that when R reaches its hmit (i.e., 31) we then
skip ahead by 32 planes. This means that the coordinate P is incremented next. Actually, to
form a complete column of a Bwrd we must count through (P 6p & 1. After completing a
column the C coordinate is incremented. When C reaches its lirmt we then skip ahead by 8
planes and so (P .,P 3 is next to be incremented. After loading a complete S-plane the next
coordinate to be incremented is B . The board itself is selected by the coordinates P P and
P e For the case of B a r d 0 we have P 2=P I = P o= 0. Finally, we a m v e at a coordinate per-
mutation for accessing the problem data by gourds, namely

(PZPIPOB P S F P g P S R)
Using this indexing scheme there are only 8 distinct boards, Bwrdp for k =0, . . . , 7. We
will need Board and Board when we compute Q +l(r for r €Board UBoard 8. We can
obtain Board I) (Bourd 9, by modlfying the manner in which we load Board 0 (Board I>.

Next consider the view of Figure 4 for accessing the problem data by Rows. The coordinate
P varys the fastest as we load an S-plane column. When P reaches its limit we next incre-
ment the column coordinate C . At this point a 32 column and 128 row portion of the S-
plane should be transferred to the PE memories. Thus we only have data to fill one quarter
of the S-plane before transferring the data to PE memory. The next coordinate to vary is B .
Finally, we use R to select the 'row' to be loaded. The resultant coordinate permutation for
accessing the data by Rows is

(R B C PI.

The coordinate permutation for indexing the data by Columns is given by

- .-
e -

June 29,1984

I

ORIGINAL PAGE IS
OF POOR QUALITY

. ’
1. I -

C

I

t .-
I

I

- 12 -

A layout of the problem data which is compatible with the three different views was found
using the road-map approach. Specifically. each main stager word contains all the bits which
are selected by the coordinates (P Sp p Sp ,B ,Bd with all the remaining coordinates held
constant. Thus each main stager word contains 4 bits of some variable located at the same
row and column position from each of 16 equally spaced planes. The remaining coordinates
R and C select the row and column, (P 2P ,Pd selects one of the eight possible sets of 16
plandBoard 1, and (B ,,B ,B 2) selects a particular group of four bits.

4.4. The Algorithm

In this section we give the remainder of the implementation of the Lax-Wendroff method on
the MPP. The previous section dealt with the static detatls of data mapping and layout while
in t h s section we give an algorithm based on these structures. We have taken the general
description of the Lax-Wendroff method given in Section 4.3 and converted it into a sequence
of computational steps to be performed on the MPP. There are 7 types of steps which we
shall specify in enough detail to make an accurate estimate of the number of machine cycles
required to perform each of them. Additionally, we give the number of PE memory locations
required to store problem data and intermediate values, and an upper bound on the number of
locations needed for temporary values used during the calculations. In what follows we shall
use the variables div , &, add , sub, and m e to denote the number of machine cycles
required for the corresponding operations. For example, the numerical difference operator on a
simple variable requires mult + 6add + sub + 8 m e cycles, one location to store the result,
and no more than three locations for temporaries The numerical difference operator uses a
value from each grid point in cube (r >. Two of these grid points are 2 grid points away from
r and four of them are 1 grid point away. Thus we get 8 m e cycles. Later we will set
muve equal to 96 cycles w h c h represents using 3 cycles per bit: one to get form PE memory
to the P-plane, one to shf t , and one to get from the P-plane to PE memory. Using 2*m0ve for
points which are two grids points away is an over estimate since we are counting the
load/store twice.

S l (k) Load Q (t for t €Boardk .
In this step the problem data (p, pu , pv , pw , and e associated with grid points in Boardk
is loaded from the SM into the AU. Each variable requires the loading of 32 bit planes and
there are 5 variables. It takes 128 cycles to load one bit plane into the S-plane and an addi-
tional cycle to store the S-plane into the PE memories. Therefore, this step takes 129*32*5 =
20,640 cycles and requires 5 locations in each PE memory.
Time: 20640 cycles
space: 5 words

S2(k): Compute E (r 1, F ' (r >, and G ' (r > for r E Buardk n1 .
In this step we compute the 15 entries in E n , F , and G ' . We also compute and save the
values u , v , w , and er since they will be used at a later stage in the computation. There-
fore, not counting temporary values used in these computations, we will require 19 additional
locations per PE It is not too dficul t to tally the total number of operations needed to a m -
pute these values.
Time: 15mult + 4div + Qdd + sub.
Space: 19 locations + 10 locations for temporaries.

June 29,1984

- 1 3 -

S3(k): Compute Q ' + '(r
The computation of Q +Ih depends on the computation of E , F , and G ' on B
Boardk
Time: 25mrrIt + 1 3 M d + 20sub + 16Omove.
Space: 5 locations + 10 locations for temporaries.

for r e (r - I r E Boardl 1 n C .

We will need an additimal 5 locations to store the results.
ard, nd

S4(k): Compute E ' "Yr >, F '"Yr 1, and G +% > for r E (r - I r EBoordk 1 n C .
This computation is similar to S q R) except that ef is not computed and u , v , and w are not
saved in this case.
Time: l4mult + 4div + 6add + sub.
Space: 15 locations + 16 locations for temporaries.

SS(k): Compute E,"(r >. F t (r >, and G:(r > for r E {r - I r E Boardk 1 n C
Time: 4 6 d + 89add + 12sub + 99move.
Space: 12 locations + 16 locations for temporaries.

S6(k): Compute Q "(r 1 for r E Boardk --I nZ .
Time: 2 0 d + 1OOadd + 35sub + 120move.
Space: 5 locations + 20 locations for temporaries.

S7(k): Store Q +*(r > for r EBoardl n1 .
Time: 20640 cycles.

The following table summarizes the above time and space estimates.

Summarv I

We next give the computation of Q n +' for points in I in terms of the steps given above. In
Figure 5 we give a parallel flowchart for the MPP program. The computation begins at the
top of the diagram and uses directed edges to denote the precedence among the steps. A com-
putation "box" may not begin execution until all the boxes preceding it have completed execu-
tion. The column of boxes along the left side of the figure corresponds to the transfer of the
newly computed values, Q +', from the AU to the SM. The column of boxes along the right
side of the figure corresponds to the transfer of Q" form the SM to the AU. The column of
boxes down the middle of the figure correspond to the computational steps The flow chart
clearly shows the poeeibilities for overlapping VO with the computations. The only steps
that have no potential for overlap are SI(0) and S7(9) and it turns out that SI(I) is only par-
tially hidden by step S2(0). The remainder of the VO sups are completely overlapped by the
computational steps Data transfers in and out of the AU essentially do not interfere with
ongoing computation in the AU. During a data transfer the VO proccss wiLl steal one cycle

June 29,1984

, - I , ,) ,
d - .

ORIGINAL PAGE IS
OF POOR QUALIW

I
i
I

*
b

I

- - I

,
/-

out of every 129 cycles which is negligible for our purposes.

The boundary computations are highly problem-specfic and so we will only give cycle time
estimates for the computation and VO. Since there are six boundary planes to consider we
will require 12 I/O transfers. We shall mume that each of these transfers costs the same as
the transfer of a Board, i.e. 20640 cycles for each plane. We have gone through a boundary
computation and for one particular case we estimate about 200,000 cycles were required for
the total computation over all six boundary planes. Additionally, we shall not assume any
I/O overlap for the boundary computations. Thus we get a conservative estimate of 450,000
cycles for the boundary computations.

45. Performance Estimates

In this section we give running time estimates of the algorithm presented in the previous sec-
tions. We first give the cycle counts for various operations on 32 bit floating-point
data(Aero831.

add/sub
move

We are now in a position to estimate the total number of cycles required to compute Q +'
from Q" for all points in D . The primary computational unit in Figure 5 is the sequence
S2(&)S3(k),.,,S6(k). Using the timing values form the previous section and the values for
mS, d i v , add / sub, and move given above, we find that this sequence of step takes
252,684 cycles. This sequence is repeated 8 times. There are some initial steps and a final one
to add to this total. Step SI@) appears twice at the beginning, followed by steps
S2(1)$3(I)S#(Z)SS(I). Lastly there is step S7(9) to account for. The total for these step is
244,864 cycles. The boundary computations add another 450,000 cycles. Putting everythmg
together we get:

Total Cycles = 8* (252,684) + 244,864 + 450,000

= 2,716,336.

Another quantity of interest is the number of floating-point operations per second(flop) we
can achieve. The primary computational unit, i.e. S2(k)S3(k) ,... S6(k). uses 533 floating-point
operations. The initial steps and the final one use 386 floating-point operations. During the
computation for points in I all the PES corresponding to boundary points are masked. There
are nearly 2K PES corresponding to boundary points out of the 16K PES. Therefore we are
achieving a 14K-fold duplication during the computation over the interior grid points. We
will ignore the floating-point operations of the boundary computation. Putting everything
together we get:

Total Floatlng -Point Operations = 14K* (8* 533 + 386)

= 66,662,400.

June 29,1984

- 15

Quantity

The cycle time of the MPP is 100 nanoseconds and using t h s we can translate the above quan-
tities into more mterestmg forms. For example, the total tune to advance the solution one
tune step 1s approximately .272 seconds and the rate at which we are doing floating-pomt
operations is 66,662.400/ .272 which is approximately 243 megaflops(&ons of floatmg-point
operations per second).

Value I Bmension

Since we need to hold 3 Boards simultaneously, we will require approximately 200 PE
memory locations. We need 5 MbytedMbytes = 2'? of SM to hold the problem data
corresponding to two successive time steps. The following table summarizes these results.

The above estimates compare favorably to essentially the same algorithm which was coded
and run on a CRAY SMP by Alan Wray of NASA Ames. Several runs of this code were
made recently and it was found to take approximately one second of CPU time per time step
for a 32 by 32 by 128 domain. These runs used only one of the UP'S processors and all
arithmetic was done in 64-bit precision.

The above analysis can be applied to a larger problem, say 12S3. The data transfer time for a
Board remains the same but each Board now corresponds to a single xy -plane. In order to
"sweep" through the entire computational domain we will execute the primary computa-
tional unit, S2(k)S3(k),...S6(k), a total of 126 times. There are 6 boundary planes and the total
number of cycles does not increase form the previous case. The m a p difference between the
two domains is that the 1283 domain makes more efficient use of the PES. For example, since
each Board corresponds to a single xy -plane, there are fewer PES to be masked during the
execution of the primary computational unit. In fact only 510 are masked as compared to
2016 in the previous case.

Total Cycles = 126* (252,684) + 244,864 + 450,000

= 2,716,336.

Total Floating -Point Operations = 15.5K* (126* 533 + 386)

= 66,662,400.

June 29,1984

- 1 6 -

We report that the code which was run on the CRAY X.W took 16 seconds per time step for
the 1283 domain.

We mentioned earlier that we have not included metric terms in the above computations in
order to compare our estimates with an implementation of the same numerical method which
was run on the CRAY SAW. I t is clear that the inclusion of these terms wdl require more
storage and more computational cycles. These terms are included by associating with each
grid point its corresponding coordinates in physical space and from this we would then com-
pute the additional terms(Loma821. The computational steps will again overlap essentially all
of the 110 so the performance in terms of sustained floating-point computation rate will
increase.

5. Numerical Simulation Using an Implicit Scheme
Implicit methods have been proposed for the numerical solution af various forms of the
Navier-Stokes equatiodBeam78, Pu1180, Loma82, MacC82, Beam761. Implicit methods are
more complex than explicit methods since the former require the solution of a large number
of block-tridiagonal systems of equations. However, implicit methods have improved stability
properties over explicit methods thereby permitting a larger At. They have the drawback
that there is significantly more computation to be done due to the resultant block-tridiagonal
systems of equations that must be solved. In this section we shall consider the implementa-
tion of the implicit method described m[Beam781
Below we present the numerical method and a mapping of the computation onto the MPP
architecture. As before, we shall assume that the Staging Memory is fully populated with 32
banks and that the PE memories are large enough to hold all the necessary intermediate
values. In addition, we shall assume the existence of a large-capacity store for the intermedi-
ate results of the block tridiagonal solver.

S.1. The Numerical Method

The numerical method we shall consider is based on the work of Beam and
WarmindBeam78l. The formulation of the method by Beam and Warming actually includes
a number of different methods depending on the choice of certain parameters. We will not
give the complete details of the method since they can be found in [Beam781

As before, our objective is to determine Q +' given Q ' where k \< n (Notice that we admit
the pomibility that Q +' may depend on more than just the immediately preceding time-step).
The temporal scheme for advancing time is given by

June 29,1984

- 17 -

where Q" = Q (n & - Q" . The choice of 0 and 6 reproduces many
two and three-level. explicit and implicit schemes.

and AQ" = Q"

The Navier-Stokes equations in section 3 are solved for aQ I a t and then substituted into the
temporal scheme given above. This results in a nonlinear set of equations for AQ" . A linear
set of equations is obtained by the use of Taylor series expansions of various terms. For exam-
ple, E n is replaced by

Care must be taken with the spatial cross-derivative terms, since they are a potential obstacle
to obtaining a spatially factored form of the equations.

.4fter linearization and factorization the temporal scheme can be written as

L M N A Q ~ = H + m e -1/2-6)At*z.(e - ~ W ~ , A P) . (5.1)

where L , M , and N are operators and is the coefficient of the spatial cross-derivative
terms. Equation (5.1) holds pointwise in the spatial coordinates and relates the dependent
variables at the various time steps. The important point about the operators, L , M , and N is
that they each involve spatial derivatives in a single coordinate direction. For example the
operator L is

where A , P , and R are Jacobians. and R, = aR / a x . Similarly, M and N involve spatial
derivatives in the y- and z-direc tions, respectively.

Letting X = M N AQ" and Y = N hQ" we can rewrite equation (5.1) as a sequence of
equations which corresponds to the actual implementation sequence.

LX = RHS (5.1). (5.2a)

MY = X , (5.2b)

and

N a n = Y . (5.2~)

The idea is to first solve equation (5.2a) for X and then we use X in (5.2b) to solve for Y .
Finally, we use Y in (5 .2~) to solve for AQ " .

We obtain the basis of a numerical algorithm by approximating the spatial derivatives with
the hte-difference quotients. We assume a computational domain D as defined in section 4.1.
The coordinates of a grid point will be given by the indices i , j , and k where
r = i Ax + j Ay + k Az. When we substitute the finite difference quotiendthree-point
central-difference) for the spatial derivatives in equation (5.2a) we get a system of difference
equations of the form

W I - l X , -1 + LV, X I + LWi +,Xi + I = H I , (5.h)
where LUj-l, LVj and LWj are 5 by 5 matrices and 0 < i Uma -1. In equation (5.h)
we have suppres&?d the j and k indices. The dependent variable X and the c d i c i e n t
matrices are defined for each grid point and therefore we should write them as X I , , LUIfi,
etc. However, we drop the j and k indices since we are assuming that the suppressed indices

June 29,1984

- 18 -

are identical throughout (5.3a). Thls will be the usual assumption for suppressed indices.
Thus, according to (5.3a) we get one system of equations for each pair j , k corresponding to
interior grid points.

We obtain similar results by approximating the spatial derivatives in (5.2b) and (5.2~) with
finite-dserence approximations, namely,

MU,-lY,-l + M V , Y , + LWj+lY,+I = X, , (5.3b)

for each i , k corresponding to an interior grid point, and

NUp -~a?-l NVk a? + Nwk +lw;+1 = yk 9 (5.3c)

for each i , j corresponding to an interior grid point.

Boundary conditions enter the picture when the t e r m in equation (5.3) depend on values
associated with boundary points. Just as in the case of the explicit method, the boundary con-
ditions are problem specific and therefore it is difficult to say anythmg general about them.
Usually equations (5.3) result in a set of block tridiagonal systems of equations. However, d
the boundary conditions are periodic in the xdirection then equations (5.3a) reh l t in a
periodic block-tridiagonal system of equations for which solution algorithms are
availableiTemp75).

We show by example how the boundary conditions can affect the form of equations (5.3). Let
I ~ Q Z = 7. Then equation (5.3a) for a fixed j and k , in matrix notation, is

Lu, L V , L W , 0 0 0 0
0 L u 1 L V , LW3 0 0 0
0 0 u l 2 LV3 LW4 0 0
0 0 0 L u 3 LV4 L W , 0
0 0 0 0 L u 4 L V , LW6

We have 5 equations and 7 unknowns and thus we need additional conditions to completely
specify the system of equations. These additional conditions are obtained from the boundary
conditions of the particular problem at hand. For example, if the boundary conditions are
periodic in the x direction, then Q 5 = Q 3 and Q 1 = Q 2 . This implies that X = X 5 and
X I = X Substituting into (5.4) we get the following periodic block-tridiagonal system of
equations.

L V , L W , 0 0 L U O
w , LV2 LW3 0 0

0 L u z LV3 LW4 0
0 0 L u 3 LV4 L W ,

Lw6 0 0 m g L v ,

June 29,1984

- 19 -

LVI L W , 0 0 0 X I H I
u I 1 L V , LW3 0 0 x2 H z

0 0 L u 3 LV4 LW 5 x4 H4
0 0 0 L u 4 (L V , + L W J x5 H 5

0 L u 2 L V , LW4 0 X 3 = H 3 .

The above examples were intended to show how boundary conditions affect equations (5.3).
Boundary conditions also come into play in computing, H l , the right-hand-side of equation
(5.3a). The approximation of the spatial derivatives in H in (5.1) with finitedifference quo-
tients is affected by the boundary conditions since some of the terms in H contain spatial
derivatives in each of the coordinate directions as well as spatial crossderivatives. Therefore
when the indices of Hl,i are ad&nt to a boundary grid point, then the boundary conditions
will have to be taken into account.

We are now in a position to state the numerical algorithm.

Beam and Warming Implicit Factored Method

Input: Q 1 y k and Q, ;k - l all i , j , and k .
Output: Ql:k+l for all i , j , and k .
Method:

Step 1: (Compute x ; j k

0 < k < Kmux -1 solve equation (5.h) for 0 < i < Imcrx -1.
for all interior grid points) For each 0 < j < Jmax -1 and

Step 2: (Compute Yi j k

0 < k < Kmux -1 solve equation (5.3b) for 0 < j < J m a ~ -1.
for all interior grid points) For each 0 < i <Imar -1 and

Step 3: (Compute @infi for all interior grid points) For each 0 < i < Zmax -1 and
0 < j < / n u x -1 solve equation (5 . 3 ~) for 0 < k < Kmar -1.

Step 4: (Update the dependent variables) Set

Q,?k+' = Qtn, + @i?k

for all i , j , and k corresponding to interior grid points.

Step 5: update all boundary values of Q + I .

5.2 Block Tridiagonal Solver on the MPP

In this section we describe a straight-forward solution algorithm for block tridiagonal systems
of equations and propose an implementation for the MPP architecture. The positive aspect of
the proposed implementation is that it makes dicient use of the PES. A drawback is that it
requires a very large amount of storage for intermediate results.

June 29,1984

- 20 -

Steps 1. 2, and 3 of the implicit factored method require the solution of a large number of
block tridiagonal systems of equations, or a large number of periodic block tridiagonal systems
in the case of periodic boundary conditions. Solution algorithms are available for the periodic
block tridiagonal systedTemp75]. We wlll confine our attention to the nonperiodic case.

In Step 1 we must solve one system of equations for each pair of indices j , k corresponding
to interior grid points. Our approach is to assign one PE to each system of equations. Given a
128 by 128 array of processing elements we could potentially solve up to 126 by 126 equa-
tions in parallel. We do not get the full 128 by 128 since the PES on the "edges" of the PE
array are used to provide "boundary" data.

Consider a particular p r of indices j = J , k = K . The coefficient matrix for the block tri-
diagonal system can be constructed from the data associated with grid points along the b e
j = J and k = K . The vector H l p depends on values associated with neighboring grid
points in all three coordinate directions because H involves spatial derivatives and spatial
cross derivatives in all three coordinate directions.

We shall consider the following system of equations which is representative of the systems
which arise in all three steps of the implicit factored method.

We asume that the 5 by 5 block matrices 4 ; . bi and cj are associated with grid point
r = i Ax + J Ay + K & and can be computed from data associated with grid points having
indices i -1, i , and i +1 with j = J and A = K . Furthermore we assume that hi can be
computed from values associated with grid points in the neighborhood of r . We shall employ
the straight-forward algorithm for solving this system of equations. The algorithm consists of
two stages, a forward sweep followed by back-substitution.

Forward Sweep
Initialization: co = 0, Bo = 0, t o = 0, and b,, +, = 0;
fori := 1 t o n do

cy j := ai - c i -Ip i - l ;
pi := a, 'bi ; -

~i := aj-'(hj - ~i - 1 ~ j -1) ;

end Forward Sweep

June 29,1984

- 21 -

Back Substitution
Initialization: 6, = 0 and x, +, = 0;
for i := n to 1 do

x, := 2; - 01 x1+1 ;

end Back Substitution

Back substitution uses 0, and zr which are computed during the forward sweep. We have to
save these values between the forward sweep and the back substitution since the order in
which they are used is the reverse of the order in which they are generated. ALSO notice that
during the i th iteration of the forward sweep we use a, , bi and h, . As the iterations
progress during the forward sweep, conceptually. we are moving in the xdirection through
the computational domain along the line with j = J , k = K .

c,

For simplicity, we assume that Jmax = Kmax = 128. Let P, denote the set of grid points
r = i hr + j Ay + k Az for 0 < j ,k < 127 . We assign the jk th PE to the evaluation of
the jk th block tridiagonal system. Since the PE local memories are limited in size we bring
data into the PE memory as it is needed.

In Figures 6 and 7 we give partial parallel flowcharts for the forward sweep and back substi-
tution phases, respectively. The boxes on the left and right-hand sides of the figures
correspond t o data moves between the AU and the SM. The boxes down the center of the
figures correspond to the PE computations and the contents of the boxes give the terms to be
computed. I t is clear that we can overlap the data movement with the computational steps
but it is not so clear whether the computation is VO bound or not.

We can show that the forward sweep algorithm is mt I/O bound by obtaining a lower bound
on the number of cycles required for the computational steps and comparing this number to
the number of cycles required for the VO transfer. It turns out that the forward sweep a l g e
rithm is compute bound assuming that the transfers are between the SM and the AU. The
back substitution phase. on the other hand, is I/O bound. We show this by determining an
upper bound on the number of cycles to compute xi and compare this to the number of cycles
required to transfer the data(& and zj into the AU. I t turns out that the back substitution
phase is marginally VO bound.

The storage requirements of the above method are quite large since 0, is a 5 by 5 matrix and
z, is a 5 by 1 vector. We have to sture a B value and a z value for every internal grid point.

storage. If we were to try to Save the intermediate data in the PE memories, then each PE
memory would have to be about 128K bits.

I If there are 0 (1289 grid points then we will need approximately 240 Mbytes of intermediate

There are tricks which could be used to reduce the storage requirements at the expense of p r e
cessing time to recompute the data which are not stored.

5.3. Staging Memory

In this section we consider the problem of mapping the problem data into the SM to aLccomme
date the required data moves of the forward sweep procedure.

The implicit factored method requires a forward sweep and a back substitution in each of the
coordinate directions corresponding to Steps 1, 2. and 3, respectively. In the previous section
we considered the case of forward sweep and back subatitution in the x direction. In Figure

i June 29,1984

0

!

b

0

I

j

1
I

I
I
I

I
I

j

I

I
I
I

I

i
~

i
i

~

.- c ..

6

- 22 -

6 we show the order in which the problem data is loaded plane-by-plane. For Steps 2 and 3
of the implicit factored method we will have to load the problem data in the remaining two
coordinate directions.

The issue is whether there is a layout of the problem data in the SM which allows fast acces
to the data in each of the three coordinate directions. Using the roadmap idea we have found
that it is possible to find a suitable layout. In our layout the main stager word (64 bits) will
contain one bit from each of 64 different data values corresponding to 64 different grid points
If P , R , and C are the coordinates of our computational domaidsee Figure 2). then a main
stager word will contain one bit from each of the values associated with the grid points
indexed by (P J',,.R lR& d, where Pi denotes the i r h digit in the binary representation of
P , etc. Thus each main stager word contains one bit from each of the data values associated
with a 4 by 4 by 4 cube of grid points. Intuitively, this layout works because the main stager
word is not biased toward any one of the coordinate directions since it contains equivalent
amounts of data from each direction. A slrmlar idea can be found in(Loma821 where the
notion of pencil dufa bases was introduced. In this case the computational domain was
divided into cubes of grid points and strings of cubes parallel to a coordinate axis were
referred to as pencils.

An implication of this scheme is that we must load four planes simultaneously no matter
which direction we choose to go. For the computation of the previous section it means that
we would have to load planes P, , P, +,. Pi and Pi + 3 simultaneously. This causes no
difficulty since the in the forward sweep all of these planes must eventually be loaded.

In the case of the explicit method we considered two problem sizes, that is, one problem for
which the computational domain was "smaller" than the PE array and one for which the
problem size "matched" the PE array size. In the former case were able to maintain
efficient use of the PE array by assigning PES to 16 dfierent cross-sections of the computa-
tional domain. This technique will not work in the implicit case since the forward sweep
and back substitution algorithms are not easily panitioned-each iteration depends on data
computed from the previous iterations. So in this case we would like the PE array size to
"match" the problem size.

The other case to consider is when the computational domain is larger than the PE array. For
example. what happens if the domain is 254 by 254 by Kmax and we are sweeping through
the data in the z -direction? We envision the sweep being done in 4 phases where on each
phase we sweep through one quadrant in the xy plane. The reason for 254 rather than the
more usual 256 is that the sweeps must overlap by at least two grid points in order to carry
out the computation for every interior line in the z-direction. In Figure 8 we depict these
ideas.

5.4. Performance Estimates

The method used in our analysis of the explicit method was essentially "bottom up"-we
made detailed estimates of the cost of the basic computational steps and then put these
together to obtain an overall performance estimate. There is another approach which takes a
more global view. In this approach we estimate the utUz&n of the PES from the mapping
of the problem onto the AU and the SM. If it appears that the PES utilization is 8540 on the
average, then we can assume that the performance of the MPP will be approximately 85% of
its peak rated performance. Looking back on our analysis of the explicit method, we could
have amved at the megaflop estimates more quickly by taking the latter approach.

June 29,1984

./

- .
. .- I - - *

f I

/ ' I '
' ,
I '

I '

I
/

/

I t

- 23 -

In the implicit method there a number of factors which affect the PE utilization. -4s we men-
tioned above, If the computational domain is smaller than the PE array then we will have
idle PES and thus low utilization. For example, a 323 computational cube allows no more than
6.23% utilhtion of the PES whereas a 1283 computational domain allows close to fu l l ut--
tion of the PES. The mapping of the problem data into the SM can have an effect on the PE
utilization. In this case we have found that there exists a layout of the problem data in the
SM which permits almost all of the I/O transfers to be masked by PE computations. The one
exception to this is the back substitution phase where the computation becomes 110 bound.
This is mitigated somewhat by the fact that the disparity between the 110 and the computa-
tion is not too great. The mmt serious drawback of our proposed implementation of the block
tridiagonal solver is the storage requirement. We estimate that we need 240 Mbytes of storage
for intermediate results with a 1283 computational domain. It is not surprising that thls
number is so large since we are solving 1262 block tridiagonal linear systems simultaneously!
A second SM Just for intermediate results would serve well here.

The performance of the MPP on direct simulation of the Navier-Stokes equations using the
implicit factored method can be quite good given a sufficiently large computational domain. If
the computational domain is too small we loose utilization because the inherent parallelism is
not sufficient to keep a large fraction of the PES busy. Aqthe computational domain grows we
can approach the rated performance of the W P so long as the intermediate storage problem
can be handled. One way to do this is to have a second SM (256 Mbytes) to store intermediate
results. Another way is to transfer ths data to external disk storage. A disk subsystem has
been designed built which could store the intermediate data and transfer it at sufficiently high
data rated 100 Mbytes per secondXHudg841.

6. Other Computational Requirements of CFD

In this section we address a number of additional issues which arise in CFD and which must
be taken into account in the evaluation of the usefulness of the MPP architectural com-
ponents. These issues are especially important in the application of numerical methods to
problems of practical interest.

6.1. Grid Generation

The use of numerically-generated bodyanforming grid systems has become well established
in m. The objective of these techniques is to distribute the grid points throughout physical
space in such a manner that they can represent the physical solution with sufficient accuracy
and do this at minimal computational cost. The idea is to concentrate grid points in the
regions where high resolution of the physical process is necessary.

The generation of a suitable grid system is done off-line along with the graphical generation of
the physical objects to be placed in the flowfield. The effect of the grid system on the numeri-
cal computation is to introduce metric terms into the equations. These terms depend on the
structure of the grid system. These metric terms imply more storage for problem data since
each grid point in the computational domain must store its associated physical coordinates
They also imply more computation but, in general, they will not affect the efficiency of the
computation on the MPP.

There is increasing interest in the dynamic coupling of the grid system to the physical solu-
tion. The idea is that as the solution evolves, the regions of interest in the solution field
change dynamically and consequently the grid system should be able to adapt to these
changes. The mathematics of adaptive grid generation controls the location of the grid points
by sensing the gradients of the evolving physical solution. The requirements of smoothness,

June 29,1984

-

- 24 -

orthogonality, and accuracy are pintly optimized as the solution evolves. The optimized evo-
lution of the grid system is determined by the solution of a partial differential equation whch
is coupled to the physical solution.

Adaptive grid generation is still an area of intense research and holds the promise of being
able to enhance the effectiveness of numerical methods Thus it is important to study the
effect of dynamic grid generation techniques on the suitability of the .WP architectural com-
ponents in CFD. At first glance, the methods of dynamic grid generation seem to fit into the
framework of the computational schemes we have presented for the explicit and implicit
numerical methods.

6.2. ZonalMethods

In this section we consider some of the implications of zonal methods on the effectiveness of
the MPP architectural components.

In practical applications of CFD the geometrical configuration in the physical space is often tm
complex to be easily mapped into a box-like computational domain. In these cases the physical
space may be partitioned into zones and within each of these zones a computational grid is
generated. Another reason for partitioning the physical space into zones stems from the fact
that the uniform modeling of the physics may be very wasteful of computer resources. There
may also be some reason to use different numerical methods in different zones.

One effect of the partitioning of the physical space into zones is to introduce new boundaries
where different zones meet. These boundaries are called z o d boundaries and. naturally, they
introduce additional boundary conditions. Interestingly, these boundary conditions must be
designed to eliminate the effect of the zonal boundaries on the solution. Schemes have been
proposed for dealmg with zonal boundaridRai84, Hess821. Basically, these methods are
designed to insure that the fluxes of the dependent variables are conserved across the zonal
boundaries. The computations associated with zonal boundaries amount to the interpolation of
the fluxes and dependent variables across the boundaries with the fluxes being interpolated in
one direction and the dependent variables in the other. Clearly, these interpolations depend
heavily on the way the grid systems in adjacent zones line up with one another at the zonal
boundaries.

We assume that each zone is fitted with its own grid system. Within each zone we have a
box-like computational domain with boundary conditions that arise either from the original
problem or the zonal boundaries. At the zonal boundaries, grid systems from different zones
abut. These abutments may be classified according to how well the grid points from each zone
line up[Rai841 The interpolation of fluxes and dependent variables a t a zonal boundary
depends on the structure of the interface between the two grid systems at a zonal boundary.
The value of some quantity associated with a grid point on one side of a zonal boundary will
depend on the values associates with a certain collection of grid points from the other zone.
The zonal boundary computations are treated much like the usual boundary conditions with
the exception that the some values come from computations being carried out in a different
zone.

Zonal methods pose some problems for the h4PP architecture. Additional boundary computa-
tions are introduced which could to limit the amount of inherent parallelism in the computa-
tion. Clearly, in two dimensions the zonal boundaries are onedimensional and thus we can
expect poor performance from the MPP. In three dimensions the zonal boundaries will be
two-dimensional but they may have a complex structure. For example, a 'face' of one zone
may be part of two or more zonal boundaries. It seems poesible that in the course of creating

June 29,1984

- 25 -

the zones we could perform some preprocessing which would simplify the computations at
zonal boundaries making them more suitable to the W P architecture. This deserves additional
study.

The zonal boundary computations requires that values in one zone be made available to com-
putations in another zone. T b will add additional requirements on the layout of the prob
lem data in the SM.

6.3. Equations of State

In this section we consider the problem of function evaluation using table lookup. l h s prob-
lem comes up when we replace complicated function evaluations with table lookup followed
by interpolation. This is a classic example of trading space for time, Le., we run faster at the
expense of using additional spadthe table). It also arises in attempting to express the proper-
ties of materials with an equation of state(E0S).

The Navier-Stokes equations do not form a closed system of equations unless we add to them
an equation which supplies an additional relationship among the dependent variables. For
example, there are five conservation equations but there are six dependent variables including
p , the pressure. Thus we need the additional equation,

p = (l-yxe - 0.5p(u + v + w '1.
This equation relates the pressure to the other five dependent variables thereby giving us a
closed svstem of equations. It is the EOS which expresses the relationship between the vari-
ables w h c h is dependent on the properties of the material. The EOS can be simple as the
above or be some complex relationship requiring table lookup. It is well known that the
evaluation of such functions can be a dominant part of certain
computations[Dubo82, Jord82, Jr.831. Much of the previous work addresses this problem in
the context of vector processors.

In this section we raise the problem of table lookup in the context of the MPP architecture. A
typical problem in CFD is to evaluate p in t e r m of the temperature t and the density p.
This evaluation is to be done for each grid point in the computational domain where each grid
point r supplies its own arguments t (r >p(r 1. Typically, the argument values are used to
locate a cell in the table from which certain parameters are extracted. These parameters are
then used in an interpolation formula to arrive at the desired function value. We shall be
assuming that each PE holds a pair of arguments The b t issue is whether the spacing in the
table is arbitrary or not. If the spacing is arbitrary, then we will have to search the table to
determine the appropriate indices and accordingly, some form of a parallel search must be
developed. If the table is ordered then the PES can compute their corresponding indices in
parallel.

Once each PE has its local index into the table the next problem is to get the appropriate
values to each of the PES. This problem is nontrivial. Even if each PE had its own copy of
the tabldwhich is highly unlikely) we would require a local memory address register for
each PE which currently is not the case in the MPP. What is more likely is that the table is
too large to be duplicated among all the PES and therefore we have to devise a scheme to
somehow broadcast the appropriate data to each of the PEn

It is clear from the above that the table lookup problem is alive and well in the context of the
MPP and deserves careful consideration in the future.

June 29,1984

- 26 -

6.4. Software Requirements

Digital Systems such as the W P . whxh are comprised of several mapr components each wlth
their own control unit, are nontrivial to "prog~am." In the case of the MPP there are two
major functional units, the AU and the SM. Additionally, there is an AU control unit, an YO
control unit. and the Main Control UnidMCU). Each of the control units has its own
machme language and the SM even has an associated software package, called the Staging
Memory Manager, to assist the programmer. Clearly, this is the lowest level of control and
thus affords the ultimate in flexibility in using the hardware. Unfortunately, the MPP is vir-
tually unusable at this level of detail.

A Pascal compiler for the W P which will generate code for the AU is under development.
The initial specifications for the language did not include any mechanisms to deal with the
SM. but we understand that some of the aspects of programming the SM are now being encor-
porated into the language. At the time of th.s writing the Pascal compiler has not been
advanced to the point where it is a useful programming tool.

I t is clear that the scientist has a language in which to express the physics of the problems at
hand. What is needed is a careful study of the extent t o which scientific notation in a partic-
ular discipline such as CFD can be mapped into appropriate algorithms and hardware struc-
tures. If we want to devise a hardware and software system which does CFD with superior
ease and speed we can probably do so by limiting the range of computations that the system
can do well. In the case of CFD, where we have a limited application area in mind, we can
expect to have languages and software support systems that make it possible for the scientist
to specify the physical problem at a high level and then have the software system manage the
details concerning the mapping of the problem onto the hardware. For example, there will
probably only be a limited number of different data layouts in the S.M and a limited number
of data transfer methods. All these different aspects of "programming" the SM should be
worked out in advance.

I t takes a lot of effort to implement a numerical algorithm on a machine like the MPP. How-
ever if the methods being implemented are central to CFD, then the investment in creating
the software can be amortized over the (extensive) use of the code. Thus it becomes a t
effective to conceive, design, and implement the software system along with the hardware
system. All too often, a manufacturer will concentrate on the construction and delivery of a
hardware system with little or no concern about the software and this results in the delivery
of system which are essentially not finished. Then we wonder why the device is not as use-
ful as we had imagined-it is just too difficult to use.

7. MPP Architecture Extensions

The material for this section comes from a mating at Goodyear Aerospace with the system
architect and design engineers for the MPP. The purpose of the meeting was to explore the
various way in which the MPP architectural components could be enhanced to achieve more
storage capacity and faster processing speeds.

7.1. Storage

The current design of the PE's will permit addressing of up to 64K bits per P E However,
with the current technology there would be a memory cycle-time penalty for PE memory of
8K bits or more. This is because the larger chips have a slower access time. There are several
ways in which this limitation could be avoided: (1) One could wait for technology to catch

June 29,1984

- 27 -

FPADD

up. I t is not unreasonable to expect that the memorv access times will decrease with time. (2)
One could increase the width of the data path to PE memory to 8 bits or more. In this case
we can tolerate slower access times since we are fetching more bits with each access. Due to
the speed requirements the PE memory size is dependent on developments in static RAM tech-
nology.

32 bits 40 bits
32 cycles 40 cycles

Current limit for the SM capacity is 64M bytes using 256K bit dynamic RAM chips. The
same design can be pushed to 256M bytes by using the forthcoming 1M bit chips. The SM
storage size depends on the dynamic RAM technology since the access speed to the individual
chps is not the critical problem. The architecture of the SM compensates for the slower
dynamic RAMS and so we can look to dynamic ILUV technology for increasing the capacity of
the SM.

Goodyear Aerospace has designed a disk subsystem (not built) with an adequate storage capa-
city and transfer ratdHudg84L The subsystem is capable of storing up to 39936 megabytes of
data and can achieve a maximum transfer rate of 100 megabytes per second.

7.2. Speed

We discussed the possibility of increasing the speed of the PE's. Basically this is done by mak-
ing it more like a CPU with wider internal data paths and with local register memory. A
lox design has already been sketched. This design leads to the following estimates:

FPMult I 64 cycles 1 72 cycles
FPDiv 96 cycles 96 cycles ?

cycle = 100 nanoseconds

This will give a machine with approximately lox the processing rate of the current machine
and leads to a sustained processing rate of 2 or 3 gigaflops on certain CFD problems. With a
faster PE we would also need faster PE memory access. It was thought that this might be
accomplished by interleaving the PE local memory. This would probably help a great deal
since these accesses tend to be sequential.

We speculated on the possibility of building a lOOx faster PE and it was not thought to be out
of the question.

Another desirable change to the current machine and any future incarnation would be to
replace the MCU with a fast scalar and vector processor such as the proposed new machine
from Convex which promises to be about 25% of a CRAY at a cost of 500,OOO dollars.

7.3. Other Issues

We discussed the issue of the ultimate size of the PE array. It appears that the design is such
.that the PE array can easily be expanded to larger dimensions if this is necessary (a 256 x 256
a m y is possible). h this design we are assuming that the data path between PE's is one bit
wide. This is needed to limit interconnects. The ultimate limitation on speed is directly
related to interconnects between PES that are located on different boards.

June 29,1984

- 28 -

Smaller PE arrays are also possible with a 16 x 16 array probably fitting onto a single board.
Multiple independent PE arrays are also possible along with multiple independent S M I t is
feasible to thmk of the AU and the SM as building blocks which can be connected together in
different ways. For example, we could string together alternate AUs and S.Ms in a pipeline if
this would help.

8. Conclusions

The MPP architecture seems suited to the numerical algorithms of CFD. The Array Unit
with its 128 by 128 array of processing elements can be used effectively for both explicit and
implicit numerical algorithms. Even more importantly, the Staging Memory has the flexibil-
ity to provide the different *views* of the problem data which are required by the numerical
algorithms. There are additional issues in practical 0 such as adaptive grid generation,
zonal boundaries, etc., which deserve additional study. There are additional numerical
methods, such as the spectral methods, which should be measured against this architecture. It
also appears that the capacity, speed and flexibility of the MPP architectural components can
be substantially improved thereby offering the prospect of taking us into the gigaflop range for
sustained computational rates.
Wind tunnels are systems which are designed to carry out a specific class of experiments.
Even though a wind tunnel is a very expensive system to build, run, and maintain, no one
seems too scandalized to learn that a wind tunnel cannot be used to accelerate electrons. It is
tempting to speculate about designing a special-purpose hardware and software system to do
CFD. I t seems as though many of the numerical methods in CFD have matured to the point
where we could select a limited but useful class of algorithms to implement. In doing so we
enhance the chances of building a system which far outpaces anything that could be accom-
plished bv a general-purpose system.

Ref erences

Aero83.

Ames69.
Goodyear Aerospace, “General Description of the MPP,” GER-17140, April 1983.

W. F. Ames, Numerical Methods for Partial Differenricrl Equations, Barnes and Noble,
1969.

Kenneth E. Batcher, “The Multidimensional Access Memory in STARAN,” IEEE Tran-
sactions on Computers, February 1977.

Kenneth E. Batcher, “Design of a Massively Parallel Processor,” ZEEE Transactions on
Compcters, vol. C-29, no. 9, pp. 836-840, September 1980.

Batc77.

Batc80.

Batc81.
Kenneth E Batcher, “MPP Staging Memory,” Goodyear Aerospace GER-16964, March
1981.

Batc83.
Kenneth E. Batcher. “MPP Staging Memory Manager,” Goodyear Aerospace GER-17062
Rev. 2, April 1983.

Richard M Beam and R. F. Warming, “An Implicit Finite-Difference Algorithm for
Hyperbolic Systems in Conservation-Law Form,” Journal of Computational Physics, vol.

Beam76.

22. pp. 87-110, 1976.
Beam78.

Richard M Beam and R. F. Warming, “An Implicit Factored Scheme for the Compressible

June 29,1984

- 29 -

Savier-Stokes Equations,” AIAA. vol. 16, no. 4, pp. 393-402, April 1978.

Paul F. Dubois, “Swimming Upstream: Calculating Table Lookups and Piecewise Func-
tions,“ in ParaUd Compctations, ed. G. Rodrigue, 1982.

K. A. Hessenius and T. H. Pulliam, “A Zonal Approach to Solution of the Euler Equa-
tions,” AIAA Paper 824969, St. Louis, MO, 1982.

W. A. Hudgins, “MPP Disk Subsystem,” Goodyear Aerospace GER-17234, March 1984.

T. L. Jordan, “A Guide to Parallel Computation and Some Cray-1 Experiences,” in Pard-
kl Compctufions. ed. G . Rodrigue. 1982.

Jr.83.T. R. Young Jr., ‘Table Lookup: An Effective Tool on Vector Computers,” Prmedings of
the Tenth Conference on Numerical Simulation of Plasmas, San bego, CA, January
1983.

H. Lomax and T. H. Pulliam, “A Fully Implicit, Factored Code for Computing Three-
Dimensional Flows on the Illiac IV.” in Par& Compurufions, ed. G. Rodrigue, 1982.

R. W. MacCormack. “A Numerical Method for Solving the Equations of Compressible
Viscous Flow,” A I A A vol. 20. no. 9, pp. 1275-1281, September 1982.

Thomas H. Pulliam and Joseph L. Steger, “Implicit Finite-Drfference Simulations of
Three-Dimensional Compressible Flow,” AIAA, vol. 18, no. 2, pp. 159-167, February
1980.

Rai84.M. M. Rai “A Conservative Treatment of Zonal Boundaries for Euler Equation Calcula-
tions,” A M paper 84-0164, AIAA 22nd Aerospace Sciences Meeting, Reno Nevada, 1984.

Temp75
Clive Temperton, “Algorithms for the Solution of Cyclic Tridiagonal Systems,” Jour&
of Compctatiod Physics, vol. 19, pp. 317-323,1975.

A : in Wray, April 1984. NASA d e s , Personal Communication

Dubo82.

Hess82.

Hudg84.

Jord82.

Loma82.

MacC 8 2.

Pull 80.

Wray84.

June 29,1984

